TOWARD AN EMBEDDED TRAINING TOOL FOR DEEP SPACE NETWORK
OPERATIONS

Randall W. Hlill, Jr.
Kathryn F. Sturdevant

Jet Propulsion Laboratory
California institute of Technology
Pasadena, California

There arc three issues to consider when building
an embedded training system for a task domain
involving the operation of complex equipment:
(1) how skill is acquired in the task domain; (2)
how the training system should be designed to
assist in the acquisition of the skill, and more
specifically, how an intelligent tutor could aid
in learning; and (3) whether it is feasible to in-
corporate the resulting training system into the
‘operational environment. This paper describes
how these issues have been addressed in a pro-
totype training system that was developed for
operations, in NASA’s Deep Space Network
(DSN). The first two issues were addressed by
building an executable cognitive model of prob-
lem solving and skill acquisition of the task
domain and then using the model to design an
intelligent tutor. The cognitive model was de-
veloped in Soar for the DSN's Link Monitor and
Control (LMC) system; it led to several insights
about learning in the task domain that were
used to design an intelligent tutor called REACT
that implements a method called "impasse-
driven tutoring.” REACT is one component Of
the LMC training system, which also includes a
communications link simulator and a graphical
user interface. A pilot study of the LMC train-
ing system indicates that REACT shows promise
as an effective way for helping Operators to
quickly acquire expert skills. This prototype is
being used to address the feasibility of embed-
ding the training system in the DSN environ-
ment .

Copyright © 1993 by the American Institute of
Aeronautics and Astronautics, inc. All rights rc.served.

W. Lewis Johnson

University of southern California
information sciences Institute
Marina del Rey, California

Introduction

The Deep Space Network (DSN) is a world-
wide system for navigating, tracking, and com-
municating with NASA’s unmanned interplane-
tary spacecraft. The success of the DSN in ac-
complishing its mission is largely a result of the
constant scientific and engineering improve-
ments that have been made to the communica-
tions devices and the systems that monitor and
control them; but this success is also due to the
ability of the Operators to execute complex pro-
cedures on the communications equipment in a
timel y and error-free manner. Operations mis-
takes can be costly, both in terms of lost mission
data and damage to equipment. For this reason,
it is essential that the Operators be well
trained and possess the skills that are required
for performing tasks in a highly interactive en-
vironment. This paper addresses the issue of
how to build an embedded training system that
can assist Operators in rapidly acquiring the
expert level of skill needed for the, DSN opera-
tions domain.

In considering how to build an embedded
training system, three issues were addressed in
the development of a prototype called the Link
Monitor and Control (LMC) Training System:
First, what is skill and how is it acquired in the
task domain? The answer to this question was
attained by developing a computational cogni-
tive model of problem solving and skill acquisi-
tion in the LMC system task domain.
Hill&Johnson (1993a) and Hill (1993) describe
the cognitive model in detail and the results of

this work arc summarized in the section enti-
tled “A Cognitive Model of Skill Acquisition.”

Second, how should the design of the train-
ing system reflect what is known about skill ac-
quisition in the domain? in particular, what
sort of training should be provided and how can
an intelligent tutor best interact with the stu-
dent to optimize the learning process? Based on
the results of the cognitive modeling work, a
new method called “impasse-driven tutoring”
was devised and implemented in a tutor called
REACT, which is a component in the LMC train-
ing system prototype. A pilot study evaluating
the LMC training system was conducted, and the
results indicate that REACT will be an effec-
tive tutor for the LMC training system. The de-
tails of this work are reported in Hill&Johnson
(1993b) and Hill (1993) and arc summarized in
the section entitled "LMC Training System.”

The first two issues have largely been ad-
dressed by the research summarized in this pa-
per, but there is a third issuc that is still open,
namely, how feasible is it to embed the training
system in an operational environment? In many
respects this will remain an open issuc until an
attempt has been made to actually embed the
trainer in a system, but there arc a number of
reasons to believe that it is at least possible,
based on the design of the tutor that is described
in this paper. A discussion of some of the issues
that must still be addressed to prove the feasi-
bility of building an embedded training system
arc addressed both in the section on the LMC
Training System and the following section on
“‘open Issues.”

A Cognitive Modelof Skill Acquisition

The ultimate purpose for building a cognitive
model was to predict the effectivencss of vari-

ous tutoring strategies in the LMC domain
(Hill&Johnson, 1993a).In order to build the
model, an analysis of the task domain was con-
ducted; Operators were observed and inter-
viewed and sample session logs were analyzed.
The analysis provided a number of insights
about the nature of knowledge and problem
solving behavior at both the novice and expert
levels of skill, which led to some hypotheses
about skill acquisition that were implemented
in an execu table cognitive model that accounts
for the transition from novice to expert, Based
on the cognitive modeling work a new method
tutoring st ra tegy called “impasse-driven tutor-
ing" was developed and implemented in the
REACT tutor.

Task Domain Analysis: DSN QOperations
Tasks in the LMC domain involve operating a
communications link in NASA’s Deep Space
Network (IDSN) to accomplish a mission, which
is a scheduled event that typically lasts sev-
eral hours. Each mission has a set of high level
goals, e.g., acquire data from a deep space
probe, determine the location of a spacecraft us-
ing very long baseline interferometry, etc.; and
each mission also has a set of written procedures
that specify actions to be taken on the communi-
cations link devices. Communications links are
formed on a mission-by-mission basis; a link is
typically composed of a large dish antenna (26,
.34 or 70 meters in diameter), its electromechani-
cal controllers and subsystems, a re-
ceiver/exciter, and so on. Procedures arc exe-
cuted by sending commands via the LMC system
to the devices assigned to the link .

Figure 1 shows an example of a typical mis-
sion hierarchy. In this case the mission is a
type called Very Long Baseline Interferometry

Mission: | vLsel |
Procedures: Configure-DSP| | Coheremce-Teesit| . . | Acpuinesg] « . P] RjapbaiciobBata
Commands: Load-Predicts Sot-SAT-Values ¥ | Select-Recorder

Figure 1: Example mission: Very l.ong Baseline Interferometry

(VL.BD), which consists of a sct of ngrocedures:
Configure-1SP, Coherence-3’est, Acquire-Data,
Playback-Data, and so on.

Eachof the procedures involves issuing ase-
quence of commands. Figure 1 shows some of the
commands for the Configure-DS1’proced ure.
Once a command has been sent, the Operator
wails for a response from the target subsystem
that indicates whether the command was re-
jected or accepted. If the command is accepted,
the Operator monitors the subsystem to deter-
mine also whether the command had the de-
sired effect.

Here is a summary from (} lili&Johnson,
1993a; 1 1ill, 1993) of what was learned about
problem solving and skill in the 1.MC task do-
main:

1. Rote procedure execution is nof sufficient.
Through interviews with LMC Operators and
anal ysis of 1.MC Operator logs, it became clcar
that procedures cannot always be executed in
the order specified. The devices being con-
trolled are interactive in nature, consequently,
changes in state are not instantaneous when a
command is issued. Furthermore, devices may
not be in an optimal state for taking an action
specified by the procedure, and devices may
fail unexpectedly, leading to the need to change
the default procedure. This leads to the next
two observations.

2. Commands have preconditions thaf must
be satisfied before they can be successfully exe-
cuted. For this reason, a command cannot be
blindly executed, rather, the Operator must
verify that the associated devices arc in the
right state before issuing it. Thus a precondition
is a description of a device state, and each com-
mand can have multiple preconditions that
must be satisfied. When the Operator executes
a command without regard to its preconditions,
the command may either be rejected orlead to a
system failure or error. At a minimum, a com-
mand rejection costs the Operator time; some cr-
rors may lead to the failure of a procedure's
goals.

3. Commands have effects, 0or postcondi-
f ions, whose successful implemen tat ion mus t be
verified once they have been issued, In other
words, the Operator must attend to the effects
of a command once it has been issued. Like a
precondition, a postcondition is also a descrip-
tion of a device state; it can be viewed as a goal
that must be satisfied in order to complete the

w

intention of the command. So not only does the
Operator have to attend to the state of the de-
vices prior to issuing a command, but the stale of
the devices must also be attended to afterward
as well.

4. Mission procedures have goals. Each of
the procedures that arc used in the performance
of a mission has a set of goals that must be ac-
complished. If a procedure has been completely
executed and its goals have not been achieved,
then the Operator must take remedial actions to
accomplish them. Of course, if the Operator
does not recognize that the procedure’s goals
have not been achiceved then it is possible that
the mission’s goals may not be achieved. For
example, if a parameter setting on a device is
given the wrong value by the Operator then the
data that is collected may be affected, making
it more difficult for the scientist to process and
usc it.

5. A partial order exists among procedures,
This is an artifact of the I>XSN operational envi-
ronment Where a strict order is not always de-
fined among procedures (Fayyad&Cooper, 1992;
Hill&L.ee, 1992). It is possible and often desir-
able to interleave procedures in order to opti-
mize the execu t ion of the mission task, but there
are dependencies among the procedures that
compel the Operators to partially order their
execution. There are two problems that arise
when the Operator does not understand the de-
pendencies among procedures: either the task is
performed inefficiently, i.e., by not interleaving
the procedures, or clse the procedures arc per-
formed out of order, which may lead to errors
and lost time.

A Theory of Skill Acquisition
An executable cognitive model was developed to
reflect the observations that arc outlined
above. By an executable cognitive model, it is
meant that the model produces behavior simi-
lar to what has been observed in actual DSN
operations. Since the purpose of the cognitive
model was to inform the design of an intelligent
tutor, there were two additional goals for its
implementation. First, it had to reflect the be-
haviors of both novice and expert problem
solvers. Second, it had to lead to hypotheses
about how a novice acquires skill in route to be-
coming an expert.

The cognitive model was developed in Soar,
which is a problem solving architecture based

on a theory of cognition (Laird et al., 1987;
Newell, 1990). Soar has a learning mechanism
called "chunking" that generates new produc-
tions to summarize the results of problem solv-
ing in a goal hierarchy (Rosenbloom&Newell,
1986). Subgoals arc formed when Soar reaches
an impasse, of which there arc several types. A
Soar impasse occurs when the problem solver is
not making progress toward a solution. If a solu-
tion is found by the subgoal, then a chunk is cre-
ated to summarize the conditions that led to the
impasse and the results that resolve it, so that
the next time the impasse conditions occur the
chunk can be applied.

A part of the cognitive model is shown in
Figure 2. in this example the procedure called
Configure-IXI" is modeled, which is onc of the
procedures from the VLBI mission that is shown
in Figure 1. This procedure involves performing
actions to load a predicts file (Load-Predicts),
select a recording device (Select-I{ccordcr), and
S0 on. Thus the boxes that are shown next to the
"Commands" label in Figure 2 are all considered
to bc operators, that is, functions that have pre-
conditions and postconditions. The example in
Figure 2 shows the cognitive mode] issuing the
command associated with setting the S-Band
attenuation value, SAT 30, which is done once
the preconditions for the Set-SAT-value opera-
tor are satisfied.

‘I'asks are performed by the Soar-based cog-
nitive model by first selecting a procedure (e.g.,
Configure-DSI’) and then selecting an operator
to apply such as Set-SAT-Value. Each of these
sclections corresponds to a subgoal in the Soar
architecture. Once a command operator has

Procedure:

been selected, a subgoal is formed to verify the
operator’s preconditions (i.e., the subgoal called
Verify-Opcratc) r-I'reconditions shown in Figure
2). If all of the preconditions arc satisfied then
the model issues the command (e.g., SAT 30) to
the device. Under normal circumstances the
model would then have a subgoal to verify that
the command had executed as expected (Verify-
Opera tor-Postconditions), and would move onto
the next command operator once the postcondi-
tions are satisfied. This summarizes how prob-
lem solving takes place under ideal conditions,
Now consider how the model represents the be-
havior of an LMC Operator when the conditions
are not ideal.

When an expert Operator notices that a
precondition of a command operator is not satis-
fied then a subgoal called Repair-Unsatisfi ed-
I’'recondition is formed to find a command whose
execution will satisfy the precondition by
putting a device into a desired state, Once lo-
cated, the repair operator is subjected to the
same kind of precondition and postcondition
checking that has already been described. 1t is
executed and then the previously unsatisfied
precondition of the original command is re-
evaluated. This simple form of recovery repre-
sents the reactive nature of problem solving
that takes place in the LMC domain, and it il-
lustrates why rote execution is not sufficient
since the proced ures do not contain all of the
contingencies that may occur during a mission.
This also illustrates the usc of command precon-
ditions and postconditions by the Operators in
performing a task.

I Conﬂgure-DSPl

Y Y

Commands: Load-Predicts

Set-SAT-Value

¥

. * * & ,

Y

Verity-Operator-
Preconditions

Y

Repair-Unsatisf ied-
Precondiifitmm

Y

Verify-Operator-
Postconditions

Y

Attend-to-Unsatisfied-
Postcondition

Y

com rmamaix

Figure 2. Cognitive model for Configure-LMI" procedure

4

in terms of skill acquisition, the model that
has been discussed thus far takes advantage of
the Soar chunking mechanism. Since the prob-
lem solving is done in a goal hierarchy, chunks
are being built as the problem solving proceeds.
This means that the processes of selecting com-
mand operators, verifying their preconditions,
repairing unsatisfied preconditions, issuing the
command, and verifying its postconditions are
all compiled into chunks that enable the proce-
dure to be performed more efficiently the next
time the task is attempted, This accounts for
the kind of efficiency gains that arc observed
among Operators who practice the task. What
is still left to show is how novices are modeled,
both in terms of their behavior and how they
acquire ncw knowledge.

Novices were modeled as problem solvers
who lack knowledge about command precondi-
tions. Consequently, if the novice does not know
a command’s precondition and the precond it ion
is not satisfied, then the novice will issue the
command without attempting to repair theun-
sat isfied precondi t ion in the manner that the
expert would. If a precondition is not satisfied
the command will likel y be rejected by the sys-
tcm; this is the point at which the novice can
potentially acquire some new knowledge. The
model assumes that the Operator will notice
that the command has been rejected and will at-
tempt to do something about it; this is repre-
sented by the subgoal called Attend-to-
Unsatisfied-1’ostcondition in Figure 2. In this
subgoal the novice acquires knowledge about the
missing precondition that led to the command
reject ion. Once acquired, the precondi tion can be
verified and repaired, which leads to correct
behavior. As was the case with all of the prob-
lem solving, this new knowledge is compiled
into chunks that improve the overall efficiency
of task execution.

Design Requirements Derived fromModel

The cognitive model led to a number of insights
that affected the design and implementation of
the LMC Training System, and especially the
REACT intelligent tutor, Some of the design de-
cisions that were made from the lessons learned
from the cognitive model arc summarized in the
following paragraphs, (For more details, see
11ill&Johnson, 199343, 1 1ill&Johnson,1993b, and
Hill, 1993.)

1. Performthe training on a simulator. This
addresses several of the results of the cognitive
model. First, the cognitive model improved its
performance by compiling its problem solving
experience into new chunks. This is “learning by
doing," and it implies that practice is required
in order to acquire this aspect of skill. Second,
practicing the procedures cm a simulator repro-
duces the interactive nature of problem solving
in the LMC task domain. The cognitive model
gained “reactive” skill by recognizing and re-
pairing unsatisfied preconditions.

2. Interact with the student when there is a
problem solving impasse. The cognitive model
acquires new knowledge when it has a “knowl-
edge-level” impasse (Hill, 1993). This is an
impasse where problem solving cannot be con-
tinued duc to a lack of some knowledge. In the
cognitive model the missing knowledge is com-
mand preconditions, but this can be expanded to
include knowledge about procedural dependen-
cies and procedure goals also. There are two
reasons for interacting with the student al an
impasse point. The first reason is based cm the
way Soar works: learning (is., chunking) occurs
in a goal context, Thus, it makes sense that tu-
toring will be most effective if it is applied in
the goal context where the knowledge is
needed, This lecads to the second reason: the
cognitive model acquires new knowledge at the
impasse point. This was a natural place for the
problem solver to seek after new knowledge
since the problem solving could not continue
without it.

3. Develop a flexible recognition strategy.
This design requirement is derived from the
previous two and it refers to the task of model-
ing the student by interpreting the student’s ac-
tions. Since tasks are interactive, this means
that the tutor must be capable of recognizing not
only when the student has reached an impasse,
but also when the student has correctly taken an
action that deviates from the default proce-
dure. It is not desirable to interrupt the student
when there is not an impasse, since it can dis-
tract from the current goal context. Since the si-
tuation may dictate that a precondition be sat-
isfied (i.e., repaired) before continuing with the
default procedure, the tutor must be able to dis-
tinguish this type of behavior from impasse-
based behaviors.

4. Assist the student in acquiring knowledge
about command preconditions and postcondi-

tions, procedural dependencies, and procedural
goals. This partly follows from the cognitive
model, which shows how Operators acquire
knowledge about command preconditions,
Missing knowledge in the other categories Will
lead to impasses other than the ones that were
modeled. This puts a further requirement onthe
student modeler to recognize when the student
has an impasse due to a lack of knowledge about
each of these types of knowledge.

This section addresses the second issue of im-
plementing an embedded training system,
namely, how to design and implement the sys-
tem to meet the requirements derived from the
cognitive model. ¥our general requirements de-
rived from the cognitive model were described
in the last section. These requirements have
driven the development of the LMC Training

System and REACT intelligent tutor that will
now be described. (See Figure 3.)

The requirement for a simulator is satisfied
by two of the system's components, the
Graphical User Interface, and the Link simula-
tor. These components simulate the LMC user
interface and the link devices’ states, respec-
tively. The other requirements arc addressed
by an intelligent tutor called REACT.REACT
implements a method called “impasse-driven”
tutoring, whereby interactions with the student
arc initiated when it recognizes a problem solv-
ing impasse. Impasse recognition is performed
using a new technique called “situated plan at-
tribution,” which provides a flexible way of
tracing the student’s behavior: it can recognize
when the student is deviating from a procedure
in reaction to a situational contingency
(Hill&Johnson, 1993b; Hill, 1993). in addition,
it recognizes impasses stemming, from knowl-
edge-level gaps concerning command pre-condi-
tions, procedural dependencies and procedural
goals.

1 L tiC 1utor]° [)]n a1 Event Log
1 o o o -
Quit Displags Hindows Har OOV ¥ KL OADINARRONL d0R14¢
S e e - DEVR RE JECCTED, NOTKICL QUE [1R RRUNMODE
OV NEMCTTILBO LEO
TRWERT JEEQECD E [EMOMALL DUC 6 1 h NRUHNGTE
o

] T Huite board |18
COMIAN TN 1 FRILED BECRUSE OF AN Ui (:.<{119 {EDPRECONBITION finternias 1r35-14
I VICE: NCB PGH AT IRTEDYE o MOIE Oifset - 2.7
DXFECTE L1 VALUC - HIDLE A0 1 UaL Wi US: Mam VLR PREDICTS: WERONA 4

S-Rand
X-Bard Temper atur e 30.0

Temperstur €3 20.0
ISSUEDIRECTIVE: V NIME REC

T x

19500 B IRECTIVES V KRHEDLDO T Sdysten: vt --u1
7777777777 llirectives:
VLI
; VLI
) VHCNL NCB BI CFG_ L MMN ORHKNSRK v NITE
NCHN Dl SYNTHFCHEZY LOCHHZ) BFO(Hiz) NLOnl; HONE SUESET: NONE NORKE ¥ NFY .
10,0 0000000 0,0000 2300,00000 PUCH BOML: N : :}:Lé He
2 ... FREQ: N/f -
3o . v NLMTX
4 . NPCG CHOGE 23 HOME)
9 0.0 DESIRED: SPur 1,00 X (FER TOND) v NECG
b o Xrar 1,00 2 (FER T0HD I |v wecee
& SATZXAT Gattenustion): -1 -1 B |v e
9 SACHE (conbiner) NOTE: Ml) v NELN
e . N IIsaE v RERIP
17 ITEv: I LV Roe Nl
Gaeccalts &0 T e . :III‘EI: '(:1‘?1 {FLE Yone Monitor) Solection
e {EHE D 1t R — -
NIKS: NUrE T N , .
\ T 180 s N [" LG I
N, 0,000 KHz — . o
OFFsS: G.0 s ST Cof FRIDG Nob U e 30 s - e
F1s: 3101 LEIET TR NG . o .
NCOHE: 000000000 KHZ(E/0) NLNTG: 0,000 0.00 0,000 [[S’M ” El;a"] [M;-]
NILHP S 0.0 X 0,6 HEMTX Q, 000 0,00 0,000

Figure 3: LMC Training System

6

Graphical Directivo Link Simulator
User Interface ———————_> Command Processor

Device State Models

= il —

Device Display Data
Directive&Response

Directive Menu

Output Functions

Device State Data
Directive&Response

LMC Event Log

System Displays

Impasse Tutoring
Task Progress Data
—_—]

Q\N—

REACT Tutor |

impasse Recognize

REACT Tutor Window

“ask Progress Display Expert Cognitive Model

Figure 4: LMC Training System Architecture

The remainder of this section describes the
L.MC Training System, beginning with an exam-
ple of a training session with a student. This is
followed by a high-level overview of the ar-
chitecture and a description of each of the
training system components. The final "embed-
ded training” issue is addressed indirectly here
in that the design of the prototype system has a
bearing on the later discussion on the feasibility
of incorporating the trainer into an operational
environment.)

Example of Training Session
To better understand how the training system
works, consider the example shown in Figure 3.
This figure shows part of the actual graphical
user interface for the training system. The
Operator selects a command from the Command
Window and sends it to the simulator. The sim-
ulator processes the command and sends the di-
reclive and its response to the Event Log win-
dow. Device state changes arc also sent to a sys-
tem display, which in this case is the NCNF
display.

in the example shown, the Operator has un-
successfull y sent the both the N LOAD and
NRMED commands, which were rejected.
REACT observed both of these rejections and
recognized that the Operator was at an action
constraint impasse in each case. The impasses
were explicated using the expert cognitive
model; REACT generated explanations of what
caused the commands to be rejected and how to
fix the underlying problem. These explanations

were sent to the LMC Tutor window. Figure 3
shows the advice that was given to the student
about the impasse related to the NRMED com-
mand.

Architecture
The LMC Training System architecture, shown
in Figure 4, has three components: the
Graphical User Interface, the Link simulator,
and the REACT tutor. The Operator interacts
with the Link simulator via the windows pro-
vided by the Graphical User Interface (GUI).
The simulator, in turn, communicates the device
state data and directives and their responses to
the REACT Tutor and back to the Graphical
User Interface. Based on the Operator’s actions
and the device state changes, REACT deter-
mines whether the student is at an impasse. As
was shown in the example, the tutor communi-
cates its advice to the student through the
Graphical User Interface. in addition, the tutor
also updates a task progress display indicating
how wellthe student is performing the task.
The LMC training system has an object-ori-
ented design. Designing the system in this man-
ner allows parts of the system to be reused. For
example, the graphical user interface is a scpa-
rate object so program code that implemented it
is localized and not interwoven with other
parts of the system. If it was dccidcd to change
the user interface, the GUI object could be up
dated or replaced while the interfaces to the
other objects would remain unchanged. Another
example would be to replace the simulator ob-

ject with an interface to the real I. MC, while
the other LMC trainer objects remained the
same. Even if the 1LMC trainer remained scpa-
rate from the LMC system, the user interface
object could be shared between the trainer and
the I. MC, and therefore Operators would be re-
ceiving training cm the user interface with
which they would eventually operate the sys-
tem.

Link Simulator

The Link simulator models the state of the de-
vices in the communications link. It is designed
to model these devices from an Operator per-
spective: it reacts to Operator commands with
the same observable state changes and responses
as the actual devices. Thethree functional
components of the simulator are the device
models, a command processor, and a set of output
functions. The device models keep track of the
current states of the devices. The command pro-
cessor parses the Opera tor commands and causes
the devices to change state. The output func-
tions generate messages to the operator that
appear in the Event Log and System Displays.

Graphical User Interface

The graphical user interface (GUI) for the LMC
training system was developed using the
Motif ™™ widget set and the Widget Creation

library (WCL).* The Motif widget set was cho-
sen because it has become a standard for user in-
terface development. WCL was chosen to make
the user interface development easier and
faster. Because WCl. allows the user to define
the entire widget tree in resource files, it re-
duces the amount of code and thus time required
to develop the user interface.

The GUI was designed to be easy to use: the
operator inputs commands to the system from a
menu, Where the commands are provided in an
alphabetical list. The user select and clicks on
a command with a mouse pointing device and
types in any required parameters. (See the
Command Window in Figure 3.) As with the
real 1 .MC, the event log is very important to the

* 1 he Widget Creation Library (WCL) was devsloped
by David E. Smyth at the Jet Propulsion Laboratory.
It is available by anonymous ftp from
expori.lcs. init. eduin the files contrib/Wcl-2.5 .tar. Z
with documentation in the files contrib/WclDoc.t.Z and
contrib/Wcl7XTC.ps.t.Z.

operator. The LMC trainer has a representation
of the event log, which prints the operator di-
rectives and the system responses. (See the
Event Log window in Figure 3.) When the LMC
trainer detects an impasse, it prints the problem
and suggested solution in the LMC Tutor win-
dow, shown in Figure 3. The LMC Tutor window
also provides access to other LMC displays
through pull down menus. An example of an
LMC display is the NCB Configuration Table
(NCNF) shown also in Figure 3. Other informa-
tion that operators need is written on white
boards in the operations room. This information
is represented in the LMC trainer as the White
Board display. There arc many more LMC dis-
plays available to the operator which are not
yet represented in the trainer. Figure 3 repre-
sents a sample layout of the LMC tutor win-
dows. The operator can arrange the windows to
his/her liking.

REACT Tutor

The tutor monitors the state of the devices in
the Link simulator and all student-sirnulator
command interactions. The student performs an
assigned task and REACT uses a technique
called “situated plan attribution” to interpret
the student’s behavior (Hill&Johnson, 1993b;
Hill, 1993).

Since the tutoring is impasse-driven, it is
imperative to recognize when the student has
reached an impasse. REACT recognizes im-
passes in three categories: action-constraint,
plan dependency, and goal failure, The theory
behind this method is that the impasses in
each of the.sc categories occur as a result of a
know]edge-level gap or misconception about
command preconditions/postcon ditions, plan
dependencies, and plan goals, respectively.
(Note: the terms “plans” and “procedures” are
used synonymously.) Once an impasse is de-
tected, the tutor employs its expert cognitive
model to generate an explanation of the impasse
and how to resolve it. This information is given
to the student through the LMC Tutor window.

A pilot study has been conducted to deter-
mine the effectiveness of the REACT tutor in
helping Operators acquire skill in the task do-
main (1 1ill, 1993). This evaluation indicates
that students who usc the LMC training system
with the tutor arc able to resolve impasses dur-
ing training approximately ten times as fast as
students who use it without the tutor. In addi-

tion, the tutor detected impasses that went un-
noticed by the untutored students; the untutored
student could fail to achieve a goal and never
realize it, which is onc of the problems that
currently exists in the DSN operational envi-
ronment.

There arc many ways of envisioning how a
training system such as the one described in this
paper could be integrated into an operational
environment, but for the purposes of this discus-
sicm only two cases arc considered: (1) embed
the training system in the operational system
(c.g.,in the actua LMC), or (2) keep the train-
ing System as a separate entity.

in case 1, where the training system is an in-
tegrated part of the operational system, the
question that needs to be addressed first is
whether it is practical or desirable to conduct
training on the actual system. If there is no time
available for using the operational system for
training, then it probably does not make sense to
embed a training system in it. On the other
hand, if a flexible view of training is taken
where the Operator uses “dead time” during a
track to practice for an upcoming mission then it
may prove useful to provide this capability.

In case 2, where the training system is a
separate entity, there are other operational is-
sues: 1s the system located in a place where it
will be used? Will the operators be allocated
the time to use the training system? These ques-
tions are beyond the scope of this research, but
they have a bearing on deciding whether to im-
plement the trainer as an embedded part of the
operational system or as a separate entity.

Given that case 1 or case 2 makes opera-
tional sense, then the feasibility of implement-
ing the trainer for the operational system can be
evaluated by asking the following questions
with respect to each of the trainer’s components:
(1) 1s the component needed? (2) How will the
component be built so that it accurately reflects
the target system? (3) How will the component
be maintained to reflect changes to the target
system?

Clearly, allthree of the training system
prototype’s components are conceptually neces-
sary: the graphical user interface and simula-
tor arc crucial for providing a realistic training
environment, and the tutor provides a way of

accelerating the learning process. Thus the an-
swer to question 1 appears to be “yes” for all of
the components.

The answers to questions 2 and 3 are not as
clear as for question 1. These would not be issues
for the graphical user interface if the training
system was able to use the same code as the ac-
tual system. The trainer and the operational
system would always be consistent with one an-
other if this were the case. The only difference
would be that there would be some additional
windows through which the tutor could commu-
nicate with the student.

There is more of a problem with building
and maintaining a simulator that is function-
ally consistent with the actual devices and sub-
systems. Clearly there would be a need to have
arigorous way of specifying the functional de-
sign so that it could be readily implemented and
verified in both the simulator and the actual
system, One approach might be to use the simu-
lator as a living functional specification. Not
only would this serve the needs of the training
system, but it would also be helpful for testing
the interfaces among subsystems. This is an
area that requires further rescarch.

The REACT tutor itself would have to be
designed and maintained to accurately reflect
the preconditions and postconditions of each of
the commands, the dependencies among proce-
dures, and the goals of each of the procedures.
Each time the characteristics of a device or sub-
system are modified, then it would be necessary
to rc-evaluate the validity of the tutor’s
knowledge base. Again, this is an area that is
open to further investigation, Because of the
way that the tutor is implemented, the knowl-
edge bases containing this kind of information
are separable from the underlying method for
detecting and explicating impasses. This lends
itself to constructing knowledge base libraries
that could be globally checked and maintained
by system developers.

Finally, there is a broader issue than the
two cases concerning whether the training sys-
tem should be embedded or kept separate; this
is the issue of utility: Does the training system
help the operators to an extent that it justifies
the effort needed to build it? This can be an-
swered in part by evaluating the training sys-
tem’s effectiveness in training Operators. The
pilot study mentioned previously provided
some interesting results that appear to indicate

that the training system holds promise as a
means of accelerating the skill acquisition pro-
cess, but the evaluat ion needs to be expanded to
include a larger test population cm a larger set
of tasks. ~’here are plans to perform a more rig-
orous cvaluation of the system.

References

(Fayyad&Cooper, 1992) Kristina Fayyad and
L.ynne Cooper. Representing operat ions proce-
dures using temporal dependency networks.
Proceedings of the Second International
Symposium on Ground Data Systems for Space
Mission Operations, SPACEOPS-92, Pasadena,
CA, November 16-20,1992.

(1 111, 1993) Randall W. }1ill, Jr.. "Impasse-
driven tutoring for reactive skill acquisition.”
Ph.D. diss. University of Southern California,
Los Angeles, California, 1993.

(Hill&l.ce, 1992) Randall W. Hill, Jr. and
Lorrine Lee. Situation management in the Link
Monitor and Control Operator Assistant.
Proceedings of the Second International
Symposium on Ground Data Systems for Space
Mission Operations, SPACEOPS-92, Pasadcena,
CA, November 1620,1992.

(1 lil&Johnson, 1993a) Randall W. 11ill, Jr.
and W. Lewis Johnson. Designing an intelligent
tutoring system based on a reactive model of
skill acquisition. Proceedings of the World
Conference o n Artificial Intelligence in
Fducation (AI-ED 93), Edinburgh, Scotland,
1993!

(Hill&Johnson, 1993b) Randall W. Hill, Jr.
and W. Lewis Johnson. Irnpassc-driven tutoring
for reactive skill acquisition. Proceedings of
the1 993 Conference on Intelligent Computer-
Aided Training and Virf ual Environmen f
Technology (ICAT-VET-93), NASA/Johnson
Space Center, Houston, Texas, May 5-7, 1993.

(1 airdet al., 1987) John E. lLaird, Allen Newell
and Paul S.Rosenbloom. Soar: An architecture
for genera] intelligence. Artificial
Intelligence, 33, 1987:1-64.

10

(Newell, 1990) Allen Newell. Unified
Theories of Cognition.1 larvard University
Press, 1990.

(Rosenbloomé&Newell, 1986) Paul S.
Rosenbloom and Allen Newell. The chunking of
goal hierarchies: A generalized model of prac-
tice. Machine Laming, Volume Il. Edited by
Ryszard S. Michalski, Jaime G. Carbonell, and
Tom M. Mitchell. Los Altos, CA: Morgan
Kaufmann Publishers, Inc., 1986:247-288.

Acknowledgements

The research described in this paper was car-
ried out by the Jet Propulsion Laboratory,
Cdlifornia Institute of Technology, under a con-
tract with the National Aeronautics and Space
Administration.

Dr. Johnson was supported in part by the
Ad vanccd Research Projects Agency and the
Naval Research Laboratory under contract
number N00014-92-K-2015 (via a subcontract
from the University of Michigan). Views and
conclusions contained in this paper are the au-
thors’ and should not be interpreted as repre-
senting the official opinion or policy of the U.S.
Government or any agency thereof.

